Comstock Public Schools Algebra I POWER STANDARDS

L1.1 Number Systems and Number Sense

- L1.1.1 Know the different properties that hold in different number systems, and recognize that the applicable properties change in the transition from the positive integers, to all integers, to the rational numbers, and to the real numbers.
- L1.1.3 Explain how the properties of associativity, commutativity, and distributivity, as well as identity and inverse elements, are used in arithmetic and algebraic calculations.
- L1.1.4 Describe the reasons for the different effects of multiplication by, or exponentiation of, a positive number by a number less than 0 , a number between 0 and 1, and a number greater than 1.

L1.2 Representations and Relationships

- L1.2.4 \quad Organize and summarize a data set in a table, plot, chart or spreadsheet; find patterns in a display of data; understand and critique data displays in the media.

L2.1 Calculation Using Real and Complex Numbers

- L2.1.2 Calculate fluently with numerical expression involving exponents; use the rules of exponents; evaluate numerical expressions involving rational and negative exponents; transition easily between roots and exponents.

A1.1 Construction, Interpretation, and Manipulation of Expressions (linear, quadratic, polynomial, power and exponential)

- A1.1.1 Give a verbal description of an expression that is presented in symbolic form, write an algebraic expression from a verbal description, and evaluate expressions given values of the variables.
- A1.1.2 Know the properties of exponents and roots, and apply them in algebraic expressions.
- A1.1.3 Factor algebraic expressions using, for example, greatest common factor, grouping, and the special product identities.

A1.2 Solutions of Equations and Inequalities

- A1.2.1 Write equations and inequalities with one or two variables to represent mathematical or applied situations, and solve.
- A1.2.3 Solve (and justify steps in solutions) linear and quadratic equations and inequalities, including systems of up to three linear equations with three unknowns; apply the quadratic formula appropriately.
- A1.2.8* Solve an equation involving several variables (with numerical or letter corfficients) for a designated variable, and justify steps in the solution.

A2.1 Definitions, Representations and Attributes of Function

- A2.1.1 Determine whether a relationship (given in contextual, symbolic, tabular, or graphical form) is a function; and identify its domain and range.
- A2.1.3 Represent functions in symbols, graphs, tables, diagrams, or words, and translate among representations.
- A2.1.6 Identify the zeros of a function, the intervals where the values of a function are positive or negative, and describe the behavior of a function as x approaches positive or negative infinity, given the symbolic and graphical representations.

A2.2 Operations and Transformations with Functions

- A2.2.2* Apply given transformations to parent functions, and represent symbolically.

A2.3 Representations of Functions

- A2.3.1* Identify a function as a member of a family of functions based on its symbolic or graphical representation; recognize that different families of functions have different asymptotic behavior.

A2.4 Models of Real-world Situations Using Families of Functions

- A2.4.1* Identify the family of function best suited for modeling a given real-world situation.
- A2.4.2* Adopt the general symbolic form of a function to one that fits the specifications of a given situation by using the information to replace arbitrary constant with numbers.
- A2.4.3* Using the adapted general symbolic for, draw reasonable conclusions about the situation being modeled.

A3.1 Lines and Linear Functions

- A3.1.1 Write the symbolic forms of linear functions (standard, point-slope, and slope-intercept) given appropriate, information, and convert between forms.
- A3.1.2 Graph lines (including those of the form $x=h$ and $y=k$) given appropriate information.

A3.2 Exponential and Logarithmic Functions

- A3.2.1 Write the symbolic form and sketch the graph of an exponential function given appropriate information.
- A3.2.4 Understand and use the fact that the base of an exponential function determines whether the function increases or decreases and how the base affects the rate of growth or decay.

A3.3 Quadradic Functions

- A3.3.1 Write the symbolic form and sketch the graph of a quadratic function given appropriate information (e.g., vertex, intercepts, etc.)
- A3.3.2 Identify the elements of a parabola (vertex, axis of symmetry, direction of opening) given its symbolic form or its graph, and relate these elements to the coefficient(s) of the symbolic form of the function.

A3.4 Power Functions (including roots, cubics, quartics, etc.)

- A3.4.1 Write the symbolic form and sketch the graph of power functions.
- A3.4.2 Express directly and inversely proportional relationships as functions and recognize their characteristics.

A3.5 Polynomial Functions

- A3.5.1 Write the symbolic form and sketch the graph of simple polynomial functions.
- A3.5.2 Understand the effects of degree, leading coefficient, and number of real zeros on the graphs of polynomial functions of degree greater than 2.

S2.1 Scatterplots and Correlation

- S2.1.1 Construct a scatterplot for a bivariate data set with appropriate labels and scales.
- S2.1.2 Given a scatterplot, identify patterns, clusters, and outliers; recognize no correlation, weak correlation, and strong correlation.

S2.2 Linear Regression

- S2.2.1 For bivariate data which appear to form a linear pattern, find the least squares regression line by estimating visually and by calculating the equation of the regression line; interpret the slope of the equation for a regression line.
- S2.2.2 Use the equation of the least squares regression line to make appropriate predictions.

